

Advancing the WRF-Solar Model to Improve Solar Irradiance Forecast in Cloudy Environments

Yangang Liu

(Brookhaven National Laboratory)

5-6 May 2021

SETO Workshop on Solar Forecasting

Team members: Yu Xie, Jaemo Yang, Manajit Sengupta (NREL); Qilong Min (SUNY-Albany); Xin Zhou, Tao Zhang, Satoshi Endo, Shinjae Yoo (BNL)

Outline

- Recap of Key Project Elements
- Highlights since last Workshop
- Ongoing Work, Future Plan, & Challenges

Project Goal, Objectives and Tasks

One Goal

• Improve WRF-Solar model for forecasting solar irradiances in cloudy environments

Four Objectives

- Improve cloud microphysics
- Improve radiative transfer
- Develop analysis package
- Perform model evaluation
- Five Tasks
- Four objectives + Data integration
- **❖ BNL-NREL-SUNY Collaboration**

Executive Summary

- Project well progressing into final stage, adjusted according to no cost extension
- Implemented/tested BNL cloud microphysics (BNL_MP) & quantified improvements
- Upgraded default WRF-Solar based on WRF (V3.6) to a new WRF-Solar based on WRF
 V4.1.2 & quantified the changes
- Upgraded FARMS to FARMS DNI and quantified improvements
- Developed novel analysis framework & demonstrated potentials in data analysis, model evaluation, and simultaneous forecasts of GHI, DNI and DHI
- Developed/implemented parameterization for turbulent entrainment-mixing
- Developed a proto-type framework for model calibration (auto-tuning)
- Two publications (iScience, 2020; Solar Energy, 2021) and more are in preparation; 10⁺ conference (AMS and AGU) presentations

Highlight 1: from FARMS to FARMS-DNI

Xie et al., iScience 23, 100893 March 27, 2020 © 2020 The Author(s).

https://doi.org/10.1016/ j.isci.2020.100893

A Physics-Based DNI Model Assessing All-Sky Circumsolar Radiation

- FARMS has been upgraded to consider circumsolar region (FARMS-DNI).
- Details reported in iScience paper.
- Offline and online
 evaluations indicate
 potentially significant
 improvement in forecasting
 DNI (next).

Observational Evaluation of FARMS-DNI

- Beer law underestimates DNI
- Empirical DISC overestimates DNI
- FARMS DNI improves DNI substantially

New parameterization for FARMS-DNI has been developed, implemented into NREL WRF-Solar, and evaluated (next slide).

FARMS-DIN Improves WRF-Solar DNI significantly.

- We analyzed statistical metrics computed with all available data for the period of 01/01/2018 – 03/31/2018.
- Averaged data over 18 ARM-SGP sites were considered to evaluate model performances.
- There is an improvement from the FARMS-DNI with 25% decrease of RMSE and 21% decrease of MAE compared to the Lambert law (used in FARMS).

- Refine and test it in BNL WRF-Solar, together with the other upgrades.
- Great potentials to improve solar energy forecast & beyond.

Highlight 2: from Thom to BNL Microphysics

- Focus on those either poorly represented or not represented at all
- Consideration of relative dispersion in effective radius and autoconversion
- Consideration of turbulence effect via condensation rate β_{con}
- Aerosol-cloud interactions with dispersion effect
- Largely analytical with clear physics
- Turbulent entrainment-mixing processes (ongoing)

Critical Radius

Performance of BNL Vs. Thom Cloud Microphysics

- Positive y means improvement
- BNL_MP improves new WRF-Solar up to 60%.
- Smaller improvement for Cu case due to smaller cloud fraction and water content
- Microphysics effect is coupled with other model components including different versions
- Cloud-dependent
- Additional effect from entrainment-mixing

Representation of Turbulent Entrainment-Mixing Effect

Different mechanisms affect droplet size distribution differently, including possible spectral shape in between the two idealized extremes.

$$\psi = aN_L^b$$
, $b = -0.0017a + 0.1722$

Effects of Turbulent Entrainment-Mixing Processes

- Contrasting influences in evaporating vs non-evaporating grids >
 Compensation between cloud edges & core? Dependence on cloud types?
- Effects of energy dissipation rate, entrained dry air relative humidity, & shallow cu parameterizations.

Highlight 3: Novel Analysis Framework

- Based on relationships between dimensionless parameters from total and direct irradiances.
- Separation of cloud fraction and albedo effects on solar irradiances.
- A hierarchy of physics-informed persistence models to forecast GHI, DNI and DHI.
- Potentials in integrating data-driven models with physical (WRF-Solar) forecast (ongoing)

Solar Energy, Volume 215, Pages 252-265. https://doi.org/10.1016/j.solener.2020.12.045

Use of physics to improve solar forecast: Physics-informed persistence models for simultaneously forecasting GHI, DNI, and DHI

Analysis Framework for Improving Forecast

Physics-Informed Forecasting Hierarchy

- 4 levels of persistence forecast model forecasting GHI, DNI and DHI;
- The Higher the model level the clearer the representation of cloud radiative effects;
- Evaluated with decade-long obs. at ARM SGP (1998-2014);
- Higher level models perform better than lower-level models;
- Paper published in Solar Energy, 2021

PE Score (S_{ref}) =
$$(1 - \frac{PE_{model}}{PE_{ref}})$$

Table.1 A summary of cloud-radiation relationships at different levels of approximation

Hierarchy Level	Persistent Predictor	Cloud Physics Incorporated
1 st level	$F^{dn}_{all,GHI}$, $F^{dn}_{all,DNI}$, $F^{dn}_{all,DHI}$	No direct cloud physics
2 nd level	K or RCRFs	Overall cloud effects
3 rd level	R	Approximate separation of radiative effects from cloud albedo and cloud fraction
4 th level	α_r , f	Clear separation of radiative effects from cloud albedo and cloud fraction

Physics-Informed Vs. Machine Learning Models

- Percent skill score relative to smart persistence model.
- Improvement from physics-informed models is comparable to that of directly applying machine learning models, but much more computationally efficient.
- Value using both GHI and DNI in forecasting because they, together, contains cloud fraction and albedo effects.

Highlight 4: Framework for "Auto-tuning" Parameters

-8%

-9%

-10%

-11%

-12%

WRF-Solar: y = F(**x**, parameters); Seek set of optimal parameters by minimizing the cost function(s).

- Needed for objectively "tuning" parameters following cloud conditions.
- Challenges
- -- Computational cost (ML emulators & streaming & efficient parameter sampling)
- -- Multiple parameters & cost functions: Pareto optimality, e.g., optimizing multiple parameters ଛ to impove GHI and DNI forecasts.
- -- Compensating errors in WRF-Solar & role of cost function
- -- Smart cost functions (analysis framework)
- -- Integration with WRF-Solar suite

Direct irradiance (W/m^2)

Def

10%

Still room for improvement by optimizing parameters that depends likely on cloud conditions.

Ongoing Work and Future Plan

- Freeze WRF-Solar upgrades for ARBITER forecast.
- Test/refine WRF-Solar with all parameterization upgrades.
- Continue developing/testing entrainment-mixing parameterization
- Continue developing/testing auto-tuning framework.
- Summarize/analyze results for publication.
- Finalize the deliverables.

Thanks for your attention! lyg@bnl.gov

Backup slides

Radiation Tree for Studying Cloud Effects on Radiation

Relative Dispersion of Cloud Droplet Size Distribution

Clouds are water droplets microscopically

- Relative dispersion ϵ is the ratio of standard deviation to the mean radius
- Relative dispersion increases from left to right in above figures.
- Note the striking difference between the three diagrams, which all have the same water content and droplet concentration
- Most microphysics schemes assume constant relative dispersion
- A key feature of BNL microphysics is to explicitly relative dispersion

Valley of Death and Drizzle Initiation

Rain initiation has been a persistent puzzle in cloud physics energy.gov/solar since 1940s. Again missing factors are turbulence & evaporation.

Mountain of Life: New Rain Initiation Theory

The new rain initiation theory (kinetic potential theory, KPT) combines statistical barrier crossing with the systems theory for droplet size distributions (McGraw & LiuSOLAR ENERGY energy.gov/solar Phys. Rev. Lett., 2003; Phys. Rev., 2004), and provides physics for threshold.

Theoretical Autoconversion Schemes

Combining the new rain initiation theory with theory for collision and coalescence of cloud drops leads to the BNL autoconverison parameterizations (Liu & Daum, JAS, 2004; Liu et al.,

GRL, 2004, 2005, 2006, 2007, 2009): dispersion and critical radius energy.gov/solar-office

Technical Accomplishments (T6.1): Autoconversion Rate

- Autoconversion rates increase with increasing relative dispersion, thus the radiative and cloud properties are more sensitive to β_{con} when ϵ is large.
- The perturbations of simulated properties in the Cu case is due to the perturbations in the autoconversion rates.
- The sensitivity of solar irradiance is not only determined by autoconversion, but also by cloud fraction, cloud droplet activation, evaporation etc.

 $\epsilon=0.1$

 $\epsilon=0.9$

1E24

 $\epsilon=0.1$

 $\epsilon = 0.9$

1E24

 β_{con}

Highlight 2: from Thom to BNL Microphysics

Effective radius considering relative dispersion ε

$$r_e=\beta r_v, \qquad \beta=rac{(1+2arepsilon^2)^{2/3}}{(1+arepsilon^2)^{1/3}}$$
• Autoconversion considering relative dispersion $arepsilon$

$$P_{\rm L} = 1.1 \times 10^{10} \times \frac{\Gamma(\varepsilon^{-2}) \Gamma(\varepsilon^{-2} + 3, x_{cq}) \Gamma(\varepsilon^{-2} + 6, x_{cq})}{\Gamma^{3}(\varepsilon^{-2} + 3)} N_{c}^{-1} L_{c}^{3}$$

$$P_{\rm N} = 1.1 \times 10^{10} \times \frac{\Gamma(\varepsilon^{-2}, x_{cq}) \Gamma(\varepsilon^{-2} + 6, x_{cq})}{\Gamma^{2}(\varepsilon^{-2} + 3)} L_{c}^{2}$$

$$x_{cq} = \left[\frac{(1+2\varepsilon^2)(1+2\varepsilon^2)}{\varepsilon^6}\right]^{1/3} x_c^{1/3} \qquad x_c = \frac{\rho_w \nu}{\kappa^{1/2}} \beta_{con}^{1/2} N_c^{2/3} L_c^{-2}$$

Aerosol-cloud interactions with dispersion effect

$$\varepsilon = 1 - 0.7 \exp(-\alpha N_c), \alpha = 0.003$$

- Explicit consideration of ε and condensation rate β_{con} (turbulence)
- Turbulent entrainment-mixing processes (ongoing)

Task 3: Innovative Analysis Package

- Radiation-cloud relationships
- Cloud regimes
- Model/process emulator
- Streaming analysis

We will perform similar analysis for corresponding observational data to facilitate model evaluation and shorter-range forecasting as well.

Prototype Auto-Tuning Framework: Two-Step Downhill

- The convergence of downhill simplex (DS) method strongly depends on the quality of the initial values due to its local optimization ability.
- 1st step: select the three good initial values with lower tuning metrics by Latin Hypercube Sampling.
- 2nd step: DS searches the optimal solution by changing the shape of a simplex, which represents the optimal direction and step length.

1st: select good initial values WRF-Solar **Parameters** parameters DNI) Cost Function **Cost Function** Obs (GHI, DNI) 2nd: downhill simplex optimization

y = F(x, parameters)

Seek model parameters to minimize the cost function based on model prediction Y and measurements.

Test case: Tuning relative dispersion and condensation rate constant

parameter	describtion	Default	Range
vdis	Relative dispersion of cloud droplet spectrum	0.1	0.01 - 1.4
beta_con	Condensation rate constant	1.15e23	1.02e20 - 1.67e24

Cost Function:

$$\chi_{1} = \frac{1}{2} \left[\frac{mse(x_{m}^{DIR}, x_{o}^{DIR})}{mse(x_{r}^{DIR}, x_{o}^{DIR})} + \frac{mse(x_{m}^{DIF}, x_{o}^{DIF})}{mse(x_{r}^{DIF}, x_{o}^{DIF})} \right]$$

$$\chi_{2} = \frac{1}{2} \left[\frac{mse(x_{m}^{DIR}, x_{o}^{DIR})}{mse(x_{m}^{DIR}, x_{o}^{DIR})} + \frac{mse(x_{m}^{TOT}, x_{o}^{TOT})}{mse(x_{m}^{TOT}, x_{o}^{TOT})} \right]$$

where mse denotes the mean square error;
$$x_m$$
 is the model outputs; x_o is the corresponding observation; x_r is model outputs from the control

simulation with the default parameter values; subscripts DIR, DIF, and TOT denote the direct, diffuse and total irradiance, respectively.

Influence of Different Cost Functions

$$\chi_{2} = \frac{1}{2} \left[\frac{mse(x_{m}^{DIR}, x_{o}^{DIR})}{mse(x_{r}^{DIR}, x_{o}^{DIR})} + \frac{mse(x_{m}^{TOT}, x_{o}^{TOT})}{mse(x_{r}^{TOT}, x_{o}^{TOT})} \right]$$

- Optimal pair of relative dispersion and condensate rate (star) improves direct, total, and diffuse irradiances compared to the default pair (cross)
- Compensating errors between direct and diffuse irradiances & trade-off of Pareto optimization.
- Sensitivity to cost function; ongoing work with the dimensionless variables (B1, B2)
- Reduce computational cost with streaming ML emulators.

Task 4: Model Evaluation Framework

WRF-Solar Testbed Suite

Adapt BNL Fast Physics Testbed:

- WRF-Solar
- WRF-Solar LES
- Single Column WRF-Solar (SWRF-Solar)

Evaluation Metrics Suite

- Conventional metrics (e.g., RMSE)
- Relative Euclidean distance
- Taylor diagram
- New analysis package

In addition to quantifying the model-observation differences, our evaluation framework is designed to detect physical causes underlying the model-observation differences and to test new parameterizations.

WRF-Solar Suite Configurations

Table 1.1. WRF-solar configurations for the baseline simulation (Nested), large eddy simulation (LES), and single column model (SCM)

	Nested	LES	SCM
Boundary condition	NARR	VARANAL	VARANAL
# of domains	2	1	1
Size of (inner) domain	90km	14.4km	-
Horiz grid size (inner domain)	3km	100m	3km
# of vertical levels	50	227	50
Model top	100mb (~16000m)	14800m	14800m
Microphysics	Thompson scheme	Thompson scheme	Thompson scheme
Radiation (SW / LW)	RRTMG / RRTMG	RRTMG / RRTMG	RRTMG / RRTMG
Boundary layer	MYNN	-	MYNN
Land surface model	RUC	VARANAL*	VARANAL*
Cumulus parameterization	GF shallow cumulus	-	GF shallow cumulus

Summary of 8 Cases (5 Cu and 3 Sc)

	Cumulus Cases	Stratocumulus Cases	
All Cases	 Larger errors cancel out in direct and diffuse irradiances leading to smaller error in total irradiance. Larger errors in simulated cloud properties than in irradiances Large errors in irradiances during the transition of the clouds Possible error compensation from incorrect cloud structures 		
Regime dependent	 Small cloud fraction, Smaller sensitivity to microphysics than Sc Better simulated cloud structures (2D cloud fraction) in LES Overestimated direct irradiance and underestimated diffuse irradiance Better simulated direct irradiance than diffuse irradiance 	 Large cloud fraction, Larger sensitivity to microphysics than Cu Better simulated cloud structures (2D cloud fraction) in nested WRF-Solar All simulations tend to underestimate the 2D cloud fraction (therefore the deeper clouds in LES results in better irradiances) Better simulated diffuse irradiance than direct irradiance 	
Case dependent	 All short cases shows small sensitivity to microphysics, while the microphysics sensitivity start from the 2nd day of simulation of the 60 h case. 	Performance of LES, Nested WRF-Solar and SCM varies from case to case	

Separation of Cloud Radiative Effects

- Simulated Irradiance vs simulated cloud properties
- New measures allow separation of clearness index error into cloud fraction and albedo errors & are more informative.
- Underestimated cloud fraction/albedo leads to overestimated total and direct irradiances but underestimated diffuse irradiance.
- Diffuse and direct irradiances are more problematic & error compensation.
- Similar results for other clouds

FARMS and FARMS-DNI

FARMS, the **F**ast **A**ll-sky **R**adiation **M**odel for **S**olar applications, is a physics-based radiative transfer model that efficiently (>500 times faster than the state-of-the-art models) computes all-sky solar radiation.

FARMS and the extension models have been used to support multiple DOE-sponsored projects on solar resource assessment and forecasting (e.g., WRF-Solar, NSRDB).

FARMS-DNI model provides a computationally efficient physics-based solution of DNI that considers the circumsolar region and improves DNI forecast in cloudy environment.

Lookup Table of Cloud Transmittance

- > 32-stream DISORT is used to compute the lookup table.
- ➤ 9.1 X 10⁸ calculations, each takes ~1-2 seconds.
- 30-120 years by a single CPU.

ML Models vs. Physics-informed Persistence Models

- Using GHI and DNI further improves ML models compare to using GHI or DNI (top panel).
- Multi-variate ML models are better than physicsinformed persistence models (bottom panel)
- Writing 2nd paper for SE
- Better integration of ML with physics.

